在本文中,提出了针对动力学不确定性的机器人操纵器提出的人工延迟阻抗控制器。控制定律将超级扭曲算法(STA)类型的二阶切换控制器通过新颖的广义过滤跟踪误差(GFTE)统一延迟估计(TDE)框架。虽然时间延迟的估计框架可以通过估算不确定的机器人动力学和相互作用力来从状态和控制工作的近期数据中估算不确定的机器人动力学和相互作用力来准确建模机器人动力学,但外部循环中的第二阶切换控制法可以在时间延迟估计的情况下提供稳健性(TDE)由于操纵器动力学的近似而引起的误差。因此,拟议的控制定律试图在机器人最终效应变量之间建立所需的阻抗模型,即在存在不确定性的情况下,在遇到平滑接触力和自由运动期间的力和运动。使用拟议的控制器以及收敛分析的两个链接操纵器的仿真结果显示出验证命题。
translated by 谷歌翻译
In recent years the importance of Smart Healthcare cannot be overstated. The current work proposed to expand the state-of-art of smart healthcare in integrating solutions for Obsessive Compulsive Disorder (OCD). Identification of OCD from oxidative stress biomarkers (OSBs) using machine learning is an important development in the study of OCD. However, this process involves the collection of OCD class labels from hospitals, collection of corresponding OSBs from biochemical laboratories, integrated and labeled dataset creation, use of suitable machine learning algorithm for designing OCD prediction model, and making these prediction models available for different biochemical laboratories for OCD prediction for unlabeled OSBs. Further, from time to time, with significant growth in the volume of the dataset with labeled samples, redesigning the prediction model is required for further use. The whole process requires distributed data collection, data integration, coordination between the hospital and biochemical laboratory, dynamic machine learning OCD prediction mode design using a suitable machine learning algorithm, and making the machine learning model available for the biochemical laboratories. Keeping all these things in mind, Accu-Help a fully automated, smart, and accurate OCD detection conceptual model is proposed to help the biochemical laboratories for efficient detection of OCD from OSBs. OSBs are classified into three classes: Healthy Individual (HI), OCD Affected Individual (OAI), and Genetically Affected Individual (GAI). The main component of this proposed framework is the machine learning OCD prediction model design. In this Accu-Help, a neural network-based approach is presented with an OCD prediction accuracy of 86 percent.
translated by 谷歌翻译
多项研究表明,从孕妇中期超声检查(USG)检查获得标准化的胎儿脑生物特征?获得这些测量值是高度主观的,专业驱动的,需要多年的培训经验,从而限制了所有怀孕母亲的优质产前护理。在这项研究中,我们提出了一种深度学习方法(DL)方法,以通过准确和自动化的卡钳放置(每次生物测量法)将其作为地标建模,从而从跨炉平面(TC)的2D USG图像(TC)计算3个关键的胎儿脑生物特征。检测问题。我们利用了临床相关的生物识别约束(卡尺点之间的关系)和与域相关的数据增强,以提高U-NET DL模型的准确性(经过训练/测试:596张图像,473个受试者/143张图像,143个受试者)。我们进行了多个实验,证明了DL主链,数据增强,推广性和基准测试,通过广泛的临床验证(DL与7位经验丰富的临床医生)对最新的最新方法进行了测试。在所有情况下,单个卡尺点和计算生物特征的放置的平均误差都与临床医生之间的错误率相当。所提出的框架的临床翻译可以帮助新手用户在可靠和标准化的胎儿大脑超声图评估中的新手使用者。
translated by 谷歌翻译
Attention mechanisms form a core component of several successful deep learning architectures, and are based on one key idea: ''The output depends only on a small (but unknown) segment of the input.'' In several practical applications like image captioning and language translation, this is mostly true. In trained models with an attention mechanism, the outputs of an intermediate module that encodes the segment of input responsible for the output is often used as a way to peek into the `reasoning` of the network. We make such a notion more precise for a variant of the classification problem that we term selective dependence classification (SDC) when used with attention model architectures. Under such a setting, we demonstrate various error modes where an attention model can be accurate but fail to be interpretable, and show that such models do occur as a result of training. We illustrate various situations that can accentuate and mitigate this behaviour. Finally, we use our objective definition of interpretability for SDC tasks to evaluate a few attention model learning algorithms designed to encourage sparsity and demonstrate that these algorithms help improve interpretability.
translated by 谷歌翻译
Jamdani is the strikingly patterned textile heritage of Bangladesh. The exclusive geometric motifs woven on the fabric are the most attractive part of this craftsmanship having a remarkable influence on textile and fine art. In this paper, we have developed a technique based on the Generative Adversarial Network that can learn to generate entirely new Jamdani patterns from a collection of Jamdani motifs that we assembled, the newly formed motifs can mimic the appearance of the original designs. Users can input the skeleton of a desired pattern in terms of rough strokes and our system finalizes the input by generating the complete motif which follows the geometric structure of real Jamdani ones. To serve this purpose, we collected and preprocessed a dataset containing a large number of Jamdani motifs images from authentic sources via fieldwork and applied a state-of-the-art method called pix2pix to it. To the best of our knowledge, this dataset is currently the only available dataset of Jamdani motifs in digital format for computer vision research. Our experimental results of the pix2pix model on this dataset show satisfactory outputs of computer-generated images of Jamdani motifs and we believe that our work will open a new avenue for further research.
translated by 谷歌翻译
Abstractive summarization has enjoyed renewed interest in recent years, thanks to pre-trained language models and the availability of large-scale datasets. Despite promising results, current models still suffer from generating factually inconsistent summaries, reducing their utility for real-world application. Several recent efforts attempt to address this by devising models that automatically detect factual inconsistencies in machine generated summaries. However, they focus exclusively on English, a language with abundant resources. In this work, we leverage factual consistency evaluation models to improve multilingual summarization. We explore two intuitive approaches to mitigate hallucinations based on the signal provided by a multilingual NLI model, namely data filtering and controlled generation. Experimental results in the 45 languages from the XLSum dataset show gains over strong baselines in both automatic and human evaluation.
translated by 谷歌翻译
We consider the problem of automatically generating stories in multiple languages. Compared to prior work in monolingual story generation, crosslingual story generation allows for more universal research on story planning. We propose to use Prompting Large Language Models with Plans to study which plan is optimal for story generation. We consider 4 types of plans and systematically analyse how the outputs differ for different planning strategies. The study demonstrates that formulating the plans as question-answer pairs leads to more coherent generated stories while the plan gives more control to the story creators.
translated by 谷歌翻译
Code-Switching, a common phenomenon in written text and conversation, has been studied over decades by the natural language processing (NLP) research community. Initially, code-switching is intensively explored by leveraging linguistic theories and, currently, more machine-learning oriented approaches to develop models. We introduce a comprehensive systematic survey on code-switching research in natural language processing to understand the progress of the past decades and conceptualize the challenges and tasks on the code-switching topic. Finally, we summarize the trends and findings and conclude with a discussion for future direction and open questions for further investigation.
translated by 谷歌翻译
We present NusaCrowd, a collaborative initiative to collect and unite existing resources for Indonesian languages, including opening access to previously non-public resources. Through this initiative, we have has brought together 137 datasets and 117 standardized data loaders. The quality of the datasets has been assessed manually and automatically, and their effectiveness has been demonstrated in multiple experiments. NusaCrowd's data collection enables the creation of the first zero-shot benchmarks for natural language understanding and generation in Indonesian and its local languages. Furthermore, NusaCrowd brings the creation of the first multilingual automatic speech recognition benchmark in Indonesian and its local languages. Our work is intended to help advance natural language processing research in under-represented languages.
translated by 谷歌翻译
The BLOOM model is a large open-source multilingual language model capable of zero-shot learning, but its pretraining was limited to 46 languages. To improve its zero-shot performance on unseen languages, it is desirable to adapt BLOOM, but previous works have only explored adapting small language models. In this work, we apply existing language adaptation strategies to BLOOM and benchmark its zero-shot prompting performance on eight new languages. We find language adaptation to be effective at improving zero-shot performance in new languages. Surprisingly, adapter-based finetuning is more effective than continued pretraining for large models. In addition, we discover that prompting performance is not significantly affected by language specifics, such as the writing system. It is primarily determined by the size of the language adaptation data. We also add new languages to BLOOMZ, which is a multitask finetuned version of BLOOM capable of following task instructions zero-shot. We find including a new language in the multitask fine-tuning mixture to be the most effective method to teach BLOOMZ a new language. We conclude that with sufficient training data language adaptation can generalize well to diverse languages. Our code is available at \url{https://github.com/bigscience-workshop/multilingual-modeling/}.
translated by 谷歌翻译